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1 Introduction

Let us look at the standard approach to mathematical modeling of a deterministic process. One
starts with a set X and a family of maps φt1,t2 : X → X where t1, t2 are two numbers which are

whose points correspond to the possible states of the system in question. A change in the state of
the system is modeled as a map from this set to itself. A ”process” is usually a family of such maps
– one for each interval [t0, t1] of the line representing time, which satisfy the obvious composition
condition for intervals of the form [t0, t1], [t1, t2] and [t0, t2]. For example, any (deterministic)
computer program which takes t0, t1, and the state of the system at time t0 as an input and
produces the state of the system at time t1 as an output defines a ”process” in the sense specified
above.

If the program we use is not deterministic but uses a random number generator to compute new
values of the variables from the old ones it does not define such a process.

Consider now the case when we have a process whose computer model is based on a randomized
algorithm to produce the new values of the variables from the old ones. As an example we may
look at a simple population dynamics model where the the state of the system is determined by the
number of organisms currently alive, time is discrete and to produce the state at the next moment
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of time our algorithm uses a random number generator to determine whether a given organism
survives (with probability p) or dies (with probability 1− p).

Note that all the notions used in the mathematical description of a deterministic process natu-
rally belong to the language of the category theory: we have a set X and a family of morphisms
(maps) f[t0,t1] : X → X satisfying the composition condition.

The stochastic category described below allows one to repeat the same description in a random-
ized case simply by replacing the category of sets with the stochastic category.

For related material see also [3], [4], [10], [2], [7].

2 Stochastic categories

2.1 The category of measurable spaces

Let us first recall the following definition.

Definition 2.1.1 A σ-algebra R on a set X is a collection of subsets of X satisfying the following
conditions.

1. The empty subset is in R.

2. For a countable family Ui of elements of R one has ∪iUi ∈ R.

3. For U in R the complement X\U to U in X is in R.

For a collection R of subsets of X we let clσ(R) denote the smallest σ-algebra which contains R.
For a set of σ-algebras Rα on X the collection of subsets

⋂
α Rα is the largest σ-algebra contained

in all Rα and we will write ∑
α

Rα = clσ(∪αRα)

for the smallest σ-algebra which contains all of the Rα.
Let f : X → Y be a map of sets.

1. For a collection R of subsets of X we let f(R) denote the collection of subsets of Y of the
form f(U) where U ∈ R,

2. For a collection R of subsets of X we let f#(R) denote the collection of subsets U of Y such
that f−1(U) ∈ R.

3. For a collection S of subsets of Y we let f−1(S) denote the collection of subsets of X of the
form f−1(U) where U ∈ S.

It is easily seen that if R (resp. S) is a σ-algebra then f#(R) (resp. f−1(S)) is a σ-algebra. The
collection of subsets f(R) is usually not a σ-algebra.

Definition 2.1.2 The category MS of measurable space is defined as follows:
Objects of MS are measurable spaces i.e. pairs of the form (X,R) where X is a set and R is a

σ-algebra of subsets of X.
Morphisms from (X,R) to (Y,S) are maps of sets f : X → Y such that for each V ∈ S one

has f−1(V ) ∈ R.
Compositions of morphisms and the identity morphisms correspond to the compositions of maps

of sets and to the identity maps of sets.
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The associativity of the composition and the defining property of the identity maps are obvious
and therefore MS is indeed a category.

Sending (X,R) to X we get a functor from MS to the category Sets of sets. This functor has
two adjoints. The right adjoint sends X to (X, {∅, X}) and the left adjoint to (X, 2X) where 2X is
the set of all subsets of X. We will say that a morphism in MS is surjective, injective or bijective
if the morphism of the underlying sets has the corresponding property.

The measurable spaces (∅, {∅}) and (pt, 2pt) give us an initial object and a final object of MS.
To simplify the notation we will write ∅ instead of (∅, 2∅) and pt instead of (pt, 2pt).

For there are three natural ways to form a new measurable space starting with a family of
measurable spaces (Xα,Rα): ∐

α

(Xα,Rα) = (
∐

Xα,∩αiα,#(Rα))

∏
α

(Xα,Rα) = (
∏

Xα, clσ(∪αpr−1
α (Rα)))

K∏
α

(Xα,Rα) = (
∐

Xα,
∑
α

iα,#(Rα))

where iα and prα are the canonical embeddings and projections respectively.

Lemma 2.1.3 [prcopr] The space
∐
α(Xα,Rα) is the coproduct of the family (Xα,Rα) in MS

and the space
∏
α(Xα,Rα) is the product of the family (Xα,Rα) in MS.

Proof: ???

A categorical meaning for the space
∏K
α (Xα,Rα) will be given in Lemma 2.2.13 below.

Theorem 2.1.4 [mscomplete] The category MS is a complete category i.e. any small diagram
in MS has a limit.

Proof: By [9, Theorem 1, p.113] it is sufficient to show that products and equalizers exist inMS.
By Lemma 2.1.3 we know that products exist.

Let f, g : (X,R) → (Y,S) be a pair of morphisms in MS. Consider the equalizer diagram in
Sets corresponding to f and g

Z
i→ X →→ Y

and define the equalizer of f and g in MS by the formula

[eqdef ]eq(f, g) = (Z, i−1(R)) (1)

as in the case of the product one verifies easily that together with the obvious morphism eq(f, g)→
X this measurable space is indeed the equalizer of the morphisms f and g in MS.

Remark 2.1.5 [powerspace] Let X be a set and (Y,S) a measure space. The product of as
many copies of (Y,S) as there are elements in X can also be described in a slightly different way.
Consider the set Y X of all maps of sets from X to Y . For any V in S and any x in X let A(x, V )
be the set of all g : X → Y such that g(x) ∈ V . Let SX be the σ-algebra on Y X generated by the
subsets A(x, V ). Then our product is given by (Y,S)X = (Y X ,SX).
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Theorem 2.1.6 [mscocomplete] The category MS is co-complete i.e. any small diagram in
MS has a colimit.

Proof: By [9, Theorem 1, p.113] applied to the category MSop it is sufficient to show that MS
has coproducts and coequalizers. By Lemma 2.1.3 we know that coproducts exist.

Let f, g : (X,R)→ (Y,S) be a pair of morphisms in MS. Consider the coequalizer diagram in
Sets corresponding to f and g

X →→ Y
p→ Z

and define the coequalizer of f and g in MS by the formula

[coeqdef ]coeq(f, g) = (Z, p#(S)). (2)

As in the case of the coproduct one verifies easily that together with the obvious morphism
(Y,S) → coeq(f, g) this measurable space is indeed the coequalizer of the morphisms f and g in
MS.

Lemma 2.1.7 [epimono1] A morphism f : (X,R)→ (Y,S) in MS is an epimorphism (resp. a
monomorphism) if and only if it is surjective (resp. injective).

Proof: The ’if’ part is obvious both for epimorphisms and for monomorphisms. Let us prove the
’only if’ parts. Assume that f is a monomorphism. Then it is injective since otherwise there would
be two different morphisms from the point pt toX whose compositions with f coincide. Assume that
f is an epimorphism. Then it is surjective since otherwise there would be two different morphisms
from Y to ({0, 1}, 2{0,1}) whose compositions with f coincide.

Recall that a morphism X → Y is called an effective epimorphism if X ×Y X →→ X
f→ Y is

a coequalizer diagram and an effective monomorphism if it is an effective epimorphism in the
opposite category.

Lemma 2.1.8 [epimono2] A morphism f : (X,R)→ (Y,S) in MS is an effective epimorphism
iff it is an epimorphism and S = f#(R). It is an effective monomorphism iff it is a monomorphism
and R = f−1(S).

Proof: The statement for the epimorphisms follows from (2) and the statement for the monomor-
phisms from (1).

Example 2.1.9 [bijective] Let X be a set and R2 ⊂ R1 be two σ-algebras on X. Then the
identity of X defines a bijective morphism (X,R1)→ (X,R2). This morphism is an epimorphism
and a monomorphism but unless R2 = R1 it is not an isomorphism.

Proposition 2.1.10 [epimono3] For any morphism f : (X,R) → (Y,S) there exists a unique
decomposition of the form f = i ◦ b ◦ p where i is an effective monomorphism, b is a bijection and
p is an effective epimorphism.

Proof: Let X
p→ Z

i→ Y be the decomposition of f into a surjection and an injection in the
category of sets. It defines a decomposition of f in the category MS of the form

(X,R)
p→ (Z, p#(R)) b→ (Z, i−1(S)) i→ (Y,S)

which satisfies the conditions of the proposition by Lemmas 2.1.7 and 2.1.8. The uniqueness easily
follows from the same two lemmas.
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2.2 Category of kernels

We define the category of kernels K as follows. Objects of K are pairs (X,R) where X is a set and
R is a σ-algebra of subsets of X i.e. objects are measurable spaces. Morphisms in K are called
kernels.

Definition 2.2.1 [d1] A kernel f = f(x, U) from (X,R) to (Y,S) is a function

f(−,−) : X ×S→ [0,∞]

such that for any x ∈ X the function

f(x,−) : U 7→ f(x, U)

is a measure on (Y,S) and for any U ∈ S the function

f(−, U) : x 7→ f(x, U)

is a measurable function on (X,R).

For a measure µ on (X,R), a measurable function f on the same space and a measurable subset
Y of X we let ∫

Y
fdµ

denote the integral of f restricted to Y with respect to µ.

Lemma 2.2.2 [comp1] Let f be a kernel (X,R) → (Y,S) and g : Y → [0,∞] be a non-negative
measurable function on Y . Then the function

f∗(g) : x 7→
∫
Y
gdf(x,−)

is a measurable function on (X,R).

Proof: Consider the class C of all g such that f∗(g) is measurable. By definition of a kernel this
class contains defining functions IU of subsets U in S. Hence it contains all non-negative simple
functions on (Y,S). The continuity property of the integral (e.g. [1, Th.15.1(iii),p.204]) implies
that if 0 ≤ gn ↑ g where gn are in C then g is in C. By [1, Th.13.5, p.185] the smallest class
satisfying these two properties contains all measurable functions.

Now let f : (X,R) → (Y,S), g : (Y,S) → (Z,T) be two kernels. Consider the function on X × T

of the form
[comp2](x,W ) 7→

∫
Y
g(−,W )df(x,−) (3)

This function is well defined since g(−,W ) is measurable. For each W it is a measurable function
on (X,R) by Lemma 2.2.2. On the other hand for any x the function

W 7→
∫
Y
g(−,W )df(x,−)

is a measure on (Z,T) by the standard properties of the integral. Therefore, (3) defines a kernel
from (X,R) to (Z,T) which we denote by g ◦ f and call the composition of f and g.

For every (X,R) the kernel Id which takes x to the measure δx concentrated in x is the identity
morphism. The following three lemmas imply that our composition is associative and therefore
measure spaces, kernels and compositions (3) define a category. We denote this category by K and
call the category of kernels.
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Lemma 2.2.3 [funcmes] Let µ be a measure on (X,R) and f : (X,R)→ (Y,S) a kernel. Then
the function f∗(µ) on S of the form

U 7→
∫
X
f(−, U)dµ

is a measure on (Y,S).

Proof: Obvious.

Lemma 2.2.4 [tudysyudy] Let f : (X,R)→ (Y,S) be a kernel, µ a measure on (X,R) and g a
measurable non-negative function on (Y,S). Then one has∫

f∗(g)dµ =
∫
gdf∗(µ)

Proof: If g is the simple function corresponding to a subset U ∈ S then our equality holds by
definitions. For a general g the result follows by the same continuity argument as in the proof of
Lemma 2.2.2.

Lemma 2.2.5 [assos] The composition of kernels defined by (3) is associative.

Proof: It follows immediately from definitions and Lemma 2.2.4.

For a topological space X we will write simply X instead of the usual (X,B) for the measure space
with the underlying set X and the underlying σ-algebra the Borel σ-algebra on X. We will further
consider sets as topological spaces with the discrete topology (all subsets are open). Combining
these two conventions we will write X for the measure space with the underlying set X and the
underlying σ-algebra of all subsets of X.

Example 2.2.6 [ex0]For any (X,R) there is a unique kernel from ∅ to (X,R). Therefore ∅ is the
initial object of the category of kernels. Since there is a unique measure on ∅ there is also a unique
kernel from any (X,R) to the empty set i.e. ∅ is also the final object.

Example 2.2.7 [ex1]We will denote the object of K corresponding to the one element set by 1.
A morphism from 1 to (X,R) is the same as a measure on (X,R). A morphism from (X,R) to 1
is a non-negative measurable function or an (unbounded) random variable on (X,R). In particular

[h11]Hom(1,1) = R≥0 ∪ {∞} (4)

and for any (X,R) the composition pairing

Hom(1, (X,R))×Hom((X,R),1)→ Hom(1,1)

takes (µ, f) to
∫
fµ. Note that the composition on (4) is of the form (a, b) 7→ ab where 0∞ =∞0 = 0

as is usually assumed in measure theory.

Example 2.2.8 [matrixex] Let n be the measure space with the underlying set {1, . . . , n} and
the σ-algebra of all subsets. Then Hom(n,n) is the set of n× n matrices with entries from [0,∞].
The composition is given by the product of matrices.
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Example 2.2.9 [ex0new] Let (X,R) be a measurable space and f a non-negative measurable
function on it. Then the mapping which sends a point x of X to the measure f(x)δx is a kernel
which we denote If . If µ : 1 → (X,R) is a measure on (X,R) the the composition If ◦ µ is the
’product measure’ which sends U ∈ R to

∫
U fdµ. We will denote this measure by f ∗ µ.

Let (X,R), (Y,S) be measurable spaces and let f : X → Y be a measurable map. Sending x ∈ X
to the measure δf(x) on Y concentrated in f(y) defines a morphism from (X,R) to (Y,S) in K.
To verify the integrability condition note that for a subset U in Y the function x 7→ δf(x)(U) is
the characteristic function of the subset f−1(U). Hence the second condition of Definition 2.2.1
is equivalent to the condition that f is measurable. This construction defines a functor from the
category of measurable spaces and measurable maps to the category of kernels. To distinguish
morphisms in K which correspond to maps of measure spaces from the general morphisms we will
call the former deterministic morphisms.

Example 2.2.10 [ex5]Let µ : 1 → (X,R) be a measure on (X,R) and f : (X,R) → (Y,S) a
measurable map considered as a kernel. Then f ◦µ = f∗(µ) is the ”direct image” of µ with respect
to f .

Example 2.2.11 [retract]Let (X,R) be a measure set and (U,RU ) be a measurable subset of X
considered with the induced σ-algebra. Then the embedding (U,RU ) → (X,R) can be split by a
projection p where p(x,−) is zero for x ∈ X − U and is the measure concentrated in x for x ∈ U .
Hence any measurable subset (including the empty one) of a measure space is canonically a retract
of this space in K.

The functor from the category of measurable spaces to K does not reflect isomorphisms i.e. some
morphisms of measurable spaces may become isomorphisms when considered in K. Let (Y,S) be a
measurable space and f : X → Y a be any surjection of sets. Then measures on (X, f−1(S)) are in
one-to-one correspondence with measures on (Y,S). In particular for each point y ∈ Y we have a
measure fy on (X, f−1(S)) corresponding to the delta measure δy on (Y,S). Sending y to fy gives
us a kernel (Y,S) → (X, f−1(S)) and one verifies easily that it is inverse to the obvious kernel
(X, f−1(S)) → (Y,S). Hence, from the point of view of the category of kernels, the measurable
spaces (Y,S) and (X, f−1(S)) are indistinguishable.

Lemma 2.2.12 [copr] Let (Xα,Rα) be a family of measure spaces. The measure space
∐

(Xα,Rα)
is the coproduct of the family (Xα,Rα) in K.

Proof: ???

Lemma 2.2.13 [pr] Let (Xα,Rα) be a family of measure spaces. The measure space
∏K(Xα,Rα)

is the product of the family (Xα,Rα) in K.

Proof: ???

Lemmas 2.2.12 and 2.2.13 together with Example 2.2.6 show that K has both finite products and
finite coproducts which coincide. The set of morphisms between any two objectsis an abelian
semi-group and moreover a ”module” over R≥0 ∪ {∞}. However (since we do not allow negative
measures) morphisms can not be subtracted and therefore K is not an additive category.

Lemmas 2.2.12 and 2.2.13 also imply that the countable products and coproducts in K coincide.
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Example 2.2.14 [prcopr2]The set of natural numbers N considered with the σ-algebra of all
subsets is both the product and the coproduct of a countable number of copies of 1. The sets
HomK(N,1) and HomK(1,N) can both be identified with the set [0,∞]N of infinite sequences of
(extended) non-negative real numbers.

Lemma 2.2.15 [l1] Let G be a finite group of measurable automorphisms of a measure space
(X,R). Then the measure space (X/G,RG) is the categorical quotient of (X,R) in K with respect
to the action of G.

Proof: ???

2.3 Category of bounded kernels

A kernel f : (X,R)→ (Y,S) is called bounded if the function

βf : x 7→ f(x, Y )

is a bounded function on X. Note that this condition means in particular that βf takes only finite
values i.e. that for any x the measure f(x,−) on (Y,S) is finite. The composition of bounded
kernels is bounded and therefore measure spaces and bounded kernels form a subcategory Kb in K
called the category of bounded kernels.

Lemma 2.3.1 [whenk] Let (X,R), (Y,S) be two measurable spaces and f : X × S → R≥0 a
mapping such that for any x ∈ X the map f(x,−) is a measure on (Y,S). Let further S be
a collection of subsets of Y which is closed under finite unions and contains ∅ (resp. is closed
under finite intersections and contains Y ) such that clσ(S) = S. Then if the map x 7→ f(x, U) is
measurable for any U ∈ S then f is a kernel.

Proof: ???

For (X,R), (X ′,R′) consider the measure space (X×X ′,R×R′) where R×R′ is the σ-algebra
generated by U × V with U ∈ R and V ∈ R′. If f : (X,R) → (Y,S) and f ′ : (X ′,R′) →
(Y ′,S′) are bounded kernels define f × f ′ as the family which takes (x, x′) to the product measure
f(x,−)×f ′(x′,−) on Y ×Y ′. Standard results about products of finite measures imply that f×f ′ is
a bounded kernel. One can easily see that this construction defines a symmetric monoidal structure
on Kb which we will denote by ⊗ instead of × to avoid confusion with the categorical product. The
one element set is the unit of this monoidal structure which is why we denote it by 1.

Example 2.3.2 [net1] The standard example of a problem which one encounters if one tries to
define the product of two measures one of which is not necessarily finite can be found in [11, p.78].
The source of the problem seems to lie in the fact that while all measures are continuous with
respect to countable filtered colimits (cf. [11, Lemma 1.10(a)]) only finite measures are continuous
with respect to countable filtered limits ([11, Lemma 1.10(b)]). Since limits are required to produce
measurable subsets of the product of two measure spaces (e.g. the diagonal), a pair of measures on
the factors can not be canonically extended to a measure on the product.

Remark 2.3.3 For each (X,R) the diagonal (X,R)→ (X,R)⊗(X,R) and the projection (X,R)→
1 make (X,R) into a (commutative) comonoid in Kb with respect to the product ⊗. Note however
that this structure is not natural with respect to morphisms in K.
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Remark 2.3.4 Let fα : (Xα,Rα) → (Y,S) be a countable family of morphisms in Kb. Our
definitions imply that

∐
fα is a bounded kernel if and only if the functions βfα are uniformly

bounded. This observation shows in particular that the coproduct of our family in K is not its
coproduct in Kb.

Similarly for fα : (X,R)→ (Yα,Sα), the family which sends x to the measure
∑
fα(x,−) is not

a bounded kernel unless this measure is finite i.e. unless∑
βfα <∞

everywhere on X, which shows that the product of our family in K is not its product in Kb.
One can also see (cf. 2.5.3 below) that sending a family (Xα,Rα) to the coproduct space∐

(Xα,Rα) is not even a functor from the category of families of objects in Kb to Kb. These
properties make the category of bounded kernels to be of limited use. Instead one uses the stochastic
category considered in the following section.

Let us also include in this section some very elementary facts about bounded measures on intervals
and their distribution functions. For a measure µ on an interval [u, v] of the real line the distribution
function of µ is given by

Distr(µ)(x) = µ([u, x])

For any µ the function Distr(µ) is monotone non-decreasing, right continuous and has the property
that Distr(µ)(u) = 0. Conversely, for any function F with these properties there exists a unique
measure µ (called Lebesgue-Stieltjes measure of F ) such that Distr(µ) = F (see e.g. [?, p.33-34]).

For any bounded measure µ on [u, v] define a function

X+
µ : [0, µ([u, v])]→ [u, v]

by the rule
X+
µ = sup{x ∈ [u, v] |Distr(x) ≤ y}

Then
µ = (X+

µ )∗(dy)

where dy is the Lebesgue measure on [0, µ([u, v])] (see [?, p.34]). This is called Skorokhod repre-
sentation of µ.

A measure µ is called non-atomic if µ({x}) = 0 for any point x. A measure is non-atomic if and
only if its distribution function is continuous.

Lemma 2.3.5 [skor1] Let µ be a non-atomic measure and G = Distr(µ). Then one has:

1. X+
µ is an order preserving embedding whose image is the complement to the disjoint union of

a countable number of intervals of the form [x, x′),

2. G ◦X+ = Id,

3. G∗(µ) = dy

Proof: Since µ is non-atomic the function G is continuous. A continuous monotone non-decreasing
function is strictly increasing on the complement of a countable number of intervals of the form
[x, x′) and therefore defines an order preserving bijection between this complement and [0, G(v)].
The mapping X+ is the composition of the inverse to this bijection with the inclusion of its image
into [u, v] which proves the first two assertions.

To prove the third assertion note that G−1([0, y]) = [u, x] where G(x) = y.
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2.4 The stochastic category

A kernel f : (X,R) → (Y,S) is called stochastic if for any x one has f(x, Y ) = 1 i.e. if the
corresponding measures are probability measures (in probability theory such kernels are also known
as Markov kernels). Composition of stochastic kernels is stochastic. The subcategory generated by
stochastic kernels is called the stochastic category. We denote it by S. One may also consider the
category of sub-probability kernels whose morphism are kernels such that f(x, Y ) ≤ 1.

Example 2.4.1 [exsc1]One obtains an important class of stochastic kernels as follows. Consider
an (idealized) randomized computer algorithm A which takes as an input a sequence of real numbers
r1, . . . , rm and produces as an output a sequence of real numbers s1, . . . , sn. Let us assume that our
computer has access only to the usual (i.e. equally distributed) random numbers on the interval
I = [0, 1]. Then such an algorithm defines a map

ã : Rm × I∞ → Rn

where ã(s1, . . . , sm; ρ1, . . .) is the result our algorithm will produce for the input r1, . . . , rm if its
i-th request for a random number gives ρi. Consider the usual Lebesgue measure λ on I∞. Then
sending every (r1, . . . , rm) to the push-out of λ with respect to

ã|(r1,...,rm)×I∞ : I∞ → Rn

we get a stochastic kernel a : Rm → Rn which we call the kernel corresponding to A. This kernel
takes (r, U) where r ∈ Rm and U ⊂ Rn to the probability that our algorithm will produce a result
lying in U when given r = (r1, . . . , rm) as an input.

If A and B are two randomized algorithms such that the output of A can be used as an input
for B we map consider the composed algorithm B ◦ A. It is easy to see that the stochastic kernel
corresponding to B ◦ A is the composition b ◦ a of the stochastic kernels corresponding to A and
B. It is also easy to see that the stochastic kernel corresponding to an algorithm is a deterministic
morphism if and only if our algorithm is essentially deterministic i.e. while it may request random
numbers at some point the output does not depend on which random number it gets.

Note that for a non-empty (X,R) there are no stochastic kernels from (X,R) to ∅. Therefore,
while ∅ is an initial object of the stochastic category it is not a finial object. On the other hand for
any (X,R) there is exactly one stochastic kernel from (X,R) to 1. Therefore, 1 is the final object
of the stochastic category but not of the category of kernels.

For (X,R) and (X ′,R′) the coproduct (X,R)
∐

(X ′,R′) in K is easily seen too be the coproduct
of (X,R) and (X ′,R′) in the stochastic category. However it is not the product of (X,R) and
(X ′,R′) in the stochastic category since the sum of two probability measures is not a probability
measure.

For any measurable map of measure spaces (X,R) → (Y,S) the corresponding morphism in
K is stochastic. Therefore the functor from measurable spaces to the category of kernels factors
through the stochastic category.

Our description of morphisms from infinite coproducts given above implies the following result.

Lemma 2.4.2 [l3] Let (Xα,Rα) be a family of measure spaces. Then
∐

(Xα,Rα) of this family in
K is also a coproduct in the stochastic category.

Proof: ???
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Note also that the finite group quotients of Lemma 2.2.15 remain quotients in the stochastic
category.

The tensor product of two stochastic kernels is a stochastic kernel and therefore the symmetric
monoidal structure defined above for the category of bounded kernels gives a similar structure on
S.

Example 2.4.3 [markov2]Let G be a set which is finite or countable. We consider G as a measure
space with respect to the σ-algebra which contains all subsets of G. Then HomKb(G,G) is the set of
matrices (pij)i,j∈G such that pij ≥ 0, for any i the sum pi =

∑
j pij is finite and the set of numbers pi

is bounded. The set HomS(G,G) is the set of stochastic matrices with rows and columns numbered
by elements of G. The composition of kernels corresponds in this description to multiplication of
matrices. If P is an element of this set and f : G→ 1 a morphism in K (corresponding to a random
variable by 2.2.7) then the sequence of random variables fn = f ◦ Gn is called the Markov chain
generated by the stochastic matrix P .

2.5 Branching morphisms and branching category

For a measure space (X,R) let Sn(X,R) = (X,R)n/Σn be the n-th symmetric power of (X,R).
For n = 0 we set S0(X,R) := 1 for all (X,R) including the empty set. We further set

S•(X,R) =
∐
n≥0

Sn(X,R)

Example 2.5.1 [ex6]We obviously have:

S•(∅) = 1

and
S•(1) = N

Lemma 2.2.15 shows that for each n, Sn(−) is a functor from the category of bounded kernels to
itself. Since S•(X,R) is the coproduct of Sn(X,R) in K we conclude that S•(−) is a functor from
the category of bounded kernels to the category of all kernels. Finally, since coproduct of stochastic
kernels is stochastic we conclude that both the individual symmetric powers Sn(X,R) and the total
symmetric power S•(X,R) are functors from the stochastic category to itself.

Remark 2.5.2 For a sufficiently nice space (X,R) the space S•(X,R) is isomorphic to the space of
integer-valued measuresM((X,R),Z+) on (X,R). This interpretation of the total symmetric power
appears in some probabilistic texts on branching processes (e.g. [?]). The theory of measure valued
branching processes studies the analogs of branching processes with the integer-valued measures
replaced by more general measures.

Remark 2.5.3 [ex7]One can easily see that the total symmetric power S• is not a functor from
Kb to Kb. Indeed consider a kernel a : 1→ 1 where a > 1 (see (4)). Then Sn(a) = an and S•(a) is
not bounded since the volumes of corresponding measures on N are a, a2, . . . which is an unbounded
function on N.

Definition 2.5.4 [d2] A branching morphism φ from (X,R) to (Y,S) is a morphism in S of the
form (X,R)→ S•(Y,S).

11



The functor S•(−) is an extension to S of a functor with the same notation and meaning on
the category of measure spaces and measurable maps to itself. In particular the obvious monad
structure

S• ◦ S• → S•

Id→ S•

of the total symmetric power functor on sets defines a monad structure on S• on S. We define the
branching category B as the category of free algebras over S• . The objects of B are again measure
spaces (X,R) and morphisms from (X,R) to (Y,S) are the branching morphisms of Definition
2.5.4.

Remark 2.5.5 [notfree] In view of Lemma 2.4.2 algebras over S• are exactly commutative monoids
in S with respect to ⊗.

We will write φ : [X,R]→ [Y,S] for branching morphisms to distinguish them from morphisms in
K and S. Let us describe the composition of branching morphisms more explicitly. Observe first
that there is a measurable map of measure spaces

m : S•(Y,S)× S•(Y,S)→ S•(Y,S)

which makes S•(Y,S) into a commutative monoid. In view of Lemma 2.2.15 and the definition of
the symmetric product it shows that any kernel φ from (X,R) to S•(Y,S) in Kb defines a family
of kernels of the form

φn : Sn(X,R)→ S•(Y,S)

(where we set φ0 to be identically 1). If the original kernel is stochastic so are the kernels φn and
therefore by Lemma 2.4.2 they define a kernel

φ∗ =
∐

φn : S•(X,R)→ S•(Y,S)

We can now define the composition of two branching morphisms by the rule:

ψ ◦B φ := ψ ◦ φ∗

Forgetting the S• algebra structure defines a functor

F : B → S

which takes (X,R) to S•(X,R) and φ to the kernel φ∗ defined above.

Example 2.5.6 [ex8]Consider morphisms in the branching category of the form φ : [1] → [1].
Since S•(1) = N we may identify this set with the set of probability measures on N. For any φ let
pφ =

∑
pit

i be the generating function of this measure. This construction identifies HomB([1], [1])
with formal power series

∑
pit

i satisfying pi ≥ 0 and
∑
pi = 1. If φ, ψ two endomorphisms of [1]

in B then one has
[compseries]pφ◦ψ = pψ(pφ(t)) (5)

i.e. in this description the composition of morphisms corresponds to the composition of power
series in the reverse order.
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Example 2.5.7 [ex10]The previous example has an immediate generalization to branching mor-
phisms of the form φ : [n]→ [n] where n :=

∐n
i=1 1 is the set of n elements considered as a measure

space with respect to the maximal σ-algebra. Such morphism is a collection of n probability mea-
sures on Nn. If we describe these measures through their generating functions we may identify
HomB([n], [n]) with the set of n-tuples (f1, . . . , fn) where each fi is a formal power series in n-
variables with non-negative coefficients satisfying the condition fi(1, . . . , 1) = 1. The composition
of morphisms corresponds to the substitution composition for such n-tuples.

For any (X,R) let

[tr1]trn =
n∑
i=1

pri : (X,R)⊗n → (X,R) (6)

be the kernel which sends a point (x1, . . . , xn) to the measure
∑n

i=0 δxi . For n = 0 we take tr0 to
be the zero kernel.

The kernel (6) is clearly invariant under the action of the symmetric group and by Lemma 2.4.2
it defines a bounded kernel

trn : Sn(X,R)→ (X,R)

which sends the point x1, . . . , xn to the sum of δ-measures δx1 + . . .+ δxn (for n = 0 our kernel is 0)
and which we continue to denote by trn. The coproduct of trn’s is a kernel tr∗ : S•(X,R)→ (X,R).
For a stochastic kernel (X,R) → S•(Y,S) (i.e. for a branching morphism φ : [X,R] → [Y,S])
define a kernel

tr(φ) : (X,R)→ (Y,S)

as the composition tr∗ ◦ φ.

Lemma 2.5.8 [comm] For any stochastic kernel f : (X,R)→ (Y,S) and any n ≥ 0 the diagram

(X,R)⊗n
f⊗n−−−→ (Y,S)⊗n

trn

y ytrn
(X,R)

f−−−→ (Y,S)

commutes.

Proof: In view of the definition of trn it is sufficient to verify that pri ◦f⊗n = f ◦pri for all i. More
generally it is sufficient to see that for a kernel f : X → Y and a stochastic kernel f ′ : X ′ → Y ′

one has prY ◦ (f ⊗ f ′) = f ◦ prX i.e. that the square

X ⊗X ′ f⊗f ′−−−→ Y ⊗ Y ′

prX

y yprY
X

f−−−→ Y

commutes. Let e be the canonical stochastic kernel from an object to the point. We have

prY ◦ (f ⊗ f ′) = (IdY ⊗ e) ◦ (f ⊗ f ′) = f ⊗ (e ◦ f ′) = f ⊗ e = f ◦ prX

where the third equality holds since e ◦ f ′ = e eactly means that f ′ is stochastic.
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Proposition 2.5.9 [comm2] For any φ as above the diagram

S•(X,R)
φ∗−−−→ S•(Y,S)

tr∗

y tr∗

y
(X,R)

tr(φ)−−−→ (Y,S)

commutes.

Proof: By definition of φ∗ it is sufficient to verify that for any n the diagram

(X,R)⊗n
φ⊗n−−−→ S•(Y,S)⊗n m−−−→ S•(Y,S)

trn

y trn

y ytr∗
(X,R)

φ−−−→ S•(Y,S) tr∗−−−→ (Y,S)

commutes. The right hand side square consists of kernels which take a point to the sum of finitely
many points and it is easy to verify its commutativity explicitly. The left hand side square commutes
by Lemma 2.5.8.

Corollary 2.5.10 [main1] For a pair of branching morphisms φ : [X,R] → [Y,S], ψ : [Y,S] →
[Z,T] one has

tr(ψ ◦ φ) = tr(ψ) ◦ tr(φ)

Proof: This follows immediately from the explicit description of the composition of branching
morphisms given above and Proposition 2.5.9.

Example 2.5.11 [ex11]Consider a branching morphism φ : [1] → [1] which we describe through
the corresponding probability generating function pφ =

∑
pit

i as in Example 2.5.6. Then tr(φ) is
a kernel 1→ 1 i.e. a non-negative number. One can easily see that

tr(φ) =
∑

ipi = p′φ(1)

where p′φ is the formal derivative of pφ with respect to t. In other words, tr(φ) is in this case the
expectation value of φ. For two morphisms φ, ψ of this form Corollary 2.5.10 asserts that

tr(ψ ◦ φ) = tr(ψ)tr(φ).

In view of (5) this follows from the equation

(pφ ◦ pψ)′(1) = p′ψ(1)p′φ(pψ(1)) = p′ψ(1)p′φ(1)

where the last equation holds since the pψ(1) = 1 because ψ is a stochastic kernel.

Example 2.5.12 [ex12]Consider now branching morphisms [n]→ [n] as in Example 2.5.7. For a
morphism φ of this form tr(φ) is a kernel n→ n i.e. an n×n-matrix (aij) with entries from [0,∞].
If we represent φ a sequence of power series (f1, . . . , fn) in variables t1, . . . , tn then one gets

aij =
∂fi
∂tj

(1)

If ψ = (g1, . . . , gn) is another such morphism then the statement of Corollary 2.5.10 is again
equivalent to the formula for the differential of a composition combined with the fact that gi(1) = 1
since ψ is stochastic.
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3 Standard notions of probability

3.1 Stochastic processes

Definition 3.1.1 [sproc] A stochastic process on a set X with values in a measurable space (Y,S)
is the following collection of data:

1. a measurable space (Ω,F),

2. a probability measure P : 1→ (Ω,F),

3. a measurable map f : (Ω,F)→ (Y,S)X .

Two stochastic processes ((Ω,F), P, f) and ((Ω′,F′), P ′, f ′) are said to be equivalent in the wide
sense if the corresponding measures f ◦ P , f ′ ◦ P ′ on (Y,S)X coincide.

Stochastic processes are also called random mappings or random functions. See e.g. [5, p.41].
Since (Y,S)X is the product of X copies of (Y,S) inMS, specification of the map f is equivalent

to the specification of measurable maps f(x,−) : (Ω,F)→ (Y,S), one for each x ∈ X.
The projections Px1,...,xn of f ◦ P to the products (Y,S)n corresponding to finite subsets

{x1, . . . , xn} of X are called finite dimensional distributions (or marginal distributions) of the
process. Two processes with the same marginal distributions are said to be equivalent in the
wide sense. The main result towards the existence of a stochastic process with given family of
finite-dimensional distribution is the following theorem.

For a set X let Fin(X) be the set of finite subsets of X.

Theorem 3.1.2 (Kolmogorov) [kol1] Let Y be a separable complete topological space and BY be
its Borel σ-algebra. Then for any compatible (in the obvious sense) system of probability measures
PA on the spaces (Y,S)A where A ∈ Fin(X) there exists a unique probability measure P on (Y,S)X

whose partial projections coincide with PA.

Proof: See e.g. [5, p.46].

Corollary 3.1.3 [projlim] Under the assumption of Theorem 3.1.2 the space (Y,S)X is the in-
verse limit of the system of spaces {(Y,S)A}A∈Fin(X) in S.

Proof: Follows immediately from the theorem and Lemma 2.3.1.

Theorem 3.1.2 does not hold with out some assumptions on (Y,S). See [?]. This implies in
particular that the natural functor from MS to S does not respect filtering inverse limits. There
is however a partial result in this direction.

Lemma 3.1.4 [kol] Let X be a set, (Y,S) a measurable space and f(x,−) a collection of probability
measures on (Y,S) one for eaxh x ∈ X. Then there exists a unique probability measure µf on
(Y,S)X such that for any finite set of pairwise distinct points x1, . . . , xn of X and any finite set
V1, . . . , Vn of elements of S one has

µf (∩ni=1A(xi, Vi)) =
n∏
i=1

f(xi, Vi)

where A(x, V ) is the set of all g : X → Y such that g(x) ∈ V .
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Proof: See e.g. [8].

Example 3.1.5 [paths1] Let X = T be an interval of the real line. Then Y T is the space of
paths in Y . An elementary measurable subset A(t, V ) in (Y,S)T is the subset of all paths γ such
that γ(t) ∈ V . More generally ∩ni=1A(ti, Vi) in Y T is the subset of all paths which pass through
Vi at time ti. Lemma 3.1.4 asserts that any non-deterministic path φ : T → (Y,S) defines a
measure on (Y,S)T such that the ”size” of ∩ni=1A(ti, Vi) relative to this measure is the product of
the probabilities (determined by φ) that ti lands in Vi.

An issue which often arises in probability in connection with stochastic processes on some subset
T of the real line is the possibility of finding a process which is equivalent to the given one in the
wide sense and has trajectories lying in some subset C of (X,R)T i.e. such that Im(f) ⊂ C.

Lemma 3.1.6 [smallertr] Let C be a subset of (X,R)T . A process ((Ω,F), P, f) on T with values
in (X,R) is equivalent to a process ((Ω′,F′), P ′, f ′) such that Im(f) ⊂ C if and only if for any
A,B ∈ RT such that A ∩ C = B ∩ C one has f∗(P )(A) = f∗(P )(B).

Proof: The ’only if” part is obvious. To prove the ’if’ part one may take Ω′ = C, R′ = i−1(R)
where i : C → (X,R)T is the inclusion.

Let ev : (Y,S)X ⊗ X → (Y,S) be the evaluation morphism (g, x) 7→ g(x). Our choice of the
σ-algebra on Y X implies immediately that it is a measurable map. Consider µf as a morphism
1→ (Y,S)X . Then the diagram

X
µf⊗Id−−−−→ (Y,S)X ⊗X

Id

y yev
X

f−−−→ (Y,S)

commutes and provides a canonical implementation of the morphism f . The obvious extension of
this construction to bounded kernels (X,R)→ (Y,S) implies the following result.

Lemma 3.1.7 [hasanimpl] For any bounded kernel f : (X,R)→ (Y,S) the diagram

X
µf⊗Id−−−−→ (Y,S)X ⊗X

Id

y yev
(X,R)

f−−−→ (Y,S)

where µf is the measure of Lemma 3.1.4, is an implementation of f .

3.2 Maximal likelihood reconstruction

3.3 A categorical view of Markov processes

Definition 3.3.1 [pathsystem] Let T be a partially ordered set. A (simple) path system over T
is a collection of data of the form:

1. a measurable space (X,R),

2. a measurable space (Ω,S) together with a collection of σ-algebras Rt
s ⊂ R given for all s ≤ t

in T such that for each s ≤ u ≤ v ≤ t one has Sv
u ⊂ St

s,
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3. measurable maps ξt : (Ω,St
t)→ (X,R) given for all t ∈ T ,

The space (X,R) is called the phase space of the system and the space (Ω,S) the trajectory space.
We will write Ωt

s for the measurable space (Ω,St
s). For simplicity of notation we will sometimes

abbreviate the notation for a path system omitting some of its components.
A pre-process on a path system is a collection of sub-probability kernels µts : (X,R) → (Ω,St)

given for all s ≤ t in T such that ξsµts(x) is zero on X − {x}. A pre-process is called a process if
µ∗∗ are probability kernel.

For any process and any s ≤ t ≤ u we may consider a kernel

Id⊗ξt µut : Ωt
s → Ωt

s × Ωu
t

which takes a point ω ∈ Ω to the measure µut (ξt(ω)). This mapping is indeed a kernel since it might
be seen as the composition

Ωt
s
Id×ξt−→ Ωt

s ×Xt
Id⊗µut→ Ωt

s × Ωu
t

Definition 3.3.2 [submarkov] A (pre-)process is said to be a Markov (pre-)process if it satisfies
the condition

M For any s ≤ t ≤ u in T the square

[md]

(X,R)
µts−−−→ Ωt

s

µus

y yId⊗ξtµut
Ωu
s −−−→ Ωt

s × Ωu
t

(7)

where the lower map is the product of natural maps Ωu
s → Ωt

s and Ωu
s → Ωu

t , commutes.

To compare our definition with other definitions which appear in the literature on probability
it will be convenient for us to introduce to weaker versions of condition (M).

Mf For any s ≤ t ≤ u in T the diagram

[mfd]

(X,R)
µts−−−→ Ωt

s

µus

y yId⊗ξtµut
Ωu
s −−−→ Ωt

s × Ωu
t

ξs×Id−−−→ (X,R)× Ωu
t

(8)

commutes.

Mb For any s ≤ t ≤ u in T the diagram

[mbd][eqgik3]

(X,R)
µts−−−→ Ωt

s

µus

y yId⊗ξtµut
Ωu
s −−−→ Ωt

s × Ωu
t

Id×ξu−−−−→ Ωt
s × (X,R)

(9)

commutes.
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The first of this conditions is a generalization of the ”forward Markov property” and the second
one of the ”backward Markov property”. Our main condition (M) expresses the ”two-sided Markov
property”.

For any pre-process we may consider kernels

φst = ξt ◦ µts : (X,R)→ (X,R)

given for all s ≤ t in T , which are called the transition kernels of the pre-process.

Lemma 3.3.3 [mtr] For any pre-process µ∗∗ which satisfies (Mf) (resp. (Mb)) and any s ≤ t ≤ u
in T one has

[wm]φtu ◦ φst = φsu (10)

Proof: For µ∗∗ satisfying (Mf) one gets the equation (10) combining diagram (8) with the commu-
tative square

Ωt
s

ξt−−−→ (X,R)

Id⊗ξtµ
u
t

y yξu◦µut
(X,R)× Ωu

t
ξt◦prΩ−−−−→ (X,R)

For µ∗∗ satisfying (Mb) one gets the equation (10) combining diagram (9) with the commutative
square

Ωt
s

ξt−−−→ (X,R)

Id⊗ξtµ
u
t

y yξu◦µut
Ωu
t × (X,R)

ξt◦prΩ−−−−→ (X,R)

Remark 3.3.4 For any Markov process µts is a section of ξt. In particular, one has φtt = 1 and
the projection of µus to Ωt

s coincides with µts. If T has a maximal element tmax and µ∗∗ is a process
then it is sufficient to verify the condition (M) for u = tmax.

Remark 3.3.5 Unless Markov pre-process is a process the projection of µus to Ωt
s for s < t < u

does not coincide with µts. Indeed, by (M) we get

prs,ts,u(µus ) = (υut ◦ ξt) ∗ µts

where υut is the function on (X,R) which takes x to µut (x,Ωu
t ) and which equals 1 if and only if µ∗∗

is a process.

Remark 3.3.6 [ff] For any pre-process, φtt is the kernel of the form x 7→ υtt(x)δx. For a Markov
pre-process the equation (10) applied to t, t, t implies that for any t one has (υtt)

2 = υtt and therefore
this function may take only values 0 and 1. Note also that for a Markov pre-process one has

υts = (X
φs,t→ X → pt)

and for s ≤ t ≤ u
ξt(µus ) = υut ∗ φs,t = (x 7→ υut (x)δx) ◦ φs,t

Lemma 3.3.7 [smf] A pre-process satisfies condition (Mf) if and only if for any x ∈ X, s ≤ t ≤ u
in T and any A in Su

t one has µus (x,A) = (µut ◦ φst)(x,A).
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Proof: The condition of our lemma is equivalent to the commutativity of the external rectangle of
the diagram

[ad1]

(X,R)
µts−−−→ Ωt

s
ξt−−−→ (X,R)

µus

y yId⊗ξtµut yµut
Ωu
s −−−→ Ωt

s × Ωu
t

pr−−−→ Ωu
t

(11)

Since the right hand side square of this diagram always commutes the commutativity of (8) implies
commutativity of (11). On the other hand since both µts and µus are supported on the fibers of ξs
the commutativity of (11) implies the commutativity of (8).

Lemma 3.3.8 [smb] A pre-process satisfies condition (Mb) if and only if for any x ∈ X, s ≤ t ≤ u
in T , A ∈ St

s and B in R one has

[eqgik2]µus (x,A ∩ ξ−1
u (B)) =

∫
ω∈A

µut (ξt(ω), ξ−1
u (B))dµts(x). (12)

Proof: Since the σ-algebra on Ωt
s × (X,R) is generated in the strong sense by subsets of the form

A × B where A ∈ St
s and B ∈ R the commutativity of (9) is equivalent to the assertion that for

any x ∈ X and any A,B such A,B one has:

µus (x,A ∩ ξ−1
u (B)) = ((Ωt

s ⊗ (ξu ◦ µut ))) ◦ µts)(x,A×B)

By definition of kernel composition the right hand side is of the form

((Id⊗ (ξu ◦ µut ))) ◦ µts)(x,A×B) =
∫

(δω ⊗ (ξu ◦ µut ))(ξt(ω), A×B)dµts(x) =

=
∫
ω∈A

(ξu ◦ µut )(ξt(ω), B)dµts(x) =
∫
ω∈A

µut (ξt(ω), ξ−1
u (B))dµts(x).

Lemma 3.3.9 [cr1] A pre-process is a Markov pre-process if and only if for any x ∈ X, s ≤ t ≤ u
in T and any A ∈ St

s, B ∈ Su
t one has

µus (x,A ∩B) =
∫
ω∈A

µut (ξt(ω), B)dµts(x).

Proof: The σ-algebra on Ωt
s × Ωu

t is generated in the strong sense by subsets of the form A × B
where A ∈ St

s and B ∈ Su
t . The value of the image of a point x ∈ X on A×B under the path of

our diagram going through the lower left corner is µus (x,A ∩B). If we go through the upper right
corner we get ∫

Ωts

(δω ⊗ µut (ξt(ω)))(A×B)dµs(x) =
∫
ω∈A

µut (ξt(ω), B)dµts(x).

In the case when the phase space is a countable set with the σ-algebra of all subsets condition (M)
can be reformulated further as follows.
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Lemma 3.3.10 [natcase] Assume that (X,R) is a countable set with the σ-algebra of all subsets.
Then a pre-process on (X,R) is a Markov pre-process if and only if for any x, x′ ∈ X, any s ≤ t ≤ u
in T and any A ∈ St

s, B ∈ Su
t with ξs(A) = {x} and ξt(B) = {x′} one has

µus (x,A ∩B) =
∫
ω∈A

µut (x′, B)dµts(x).

Proof: It follows immediately from the fact that under our assumptions any element A of Ωt
s is a

disjoint union of countably many subset Ax such that ξs(Ax) = {x} for some x ∈ X which are all
measurable and the same applies to all B in Ωu

t .

Remark 3.3.11 The definition of a path system given above can be easily generalized by assuming
that we have a separate space (Xt,Rt) for each t ∈ T and a separate space Ωt

s for each s ≤ t which
are connected by a system of measurable maps of the obvious form. A (pre-)process on such
a generalized system is defined as a collection of (quasi-)sections Xs → Ωt

s and condition (M)
becomes the commutativity requirement for the only obvious diagram which can be constructed
for a triple s ≤ t ≤ u. We have chosen to use the less elegant definition given above to avoid listing
out all the obvious commutative diagrams necessary for the more general one as well as to provide
a shorter path from our definition to the one typically used in probability theory.

The more general definition may turn out to be useful however in more complex situations such
as the study of Brownian motion in the cosmological context where the phase space (the universe
contemporary with the observer) may change with time.

Definition 3.3.12 [morpath] A morphism (resp. a deterministic morphism) of path systems on
the same partially ordered set T and with the same phase space is defined as a probability kernel
(resp. a measurable map) (Ω,S)→ (Ω′,S′) which is compatible in the obvious sense with the maps
ξt, ξ′t and σ-algebras Rt

s, (R′)ts.

Given a (pre-)process µts on a path system Ω and a morphism of path systems F : Ω → Ω′ the
kernels F ◦ µts define a (pre-)process on Ω′. It follows immediately from our definition that the
image of a Markov (pre-)process is a Markov (pre-)process.

For any T and (X,R) there is a distinguished path system with (Ω,S) = (X,R)T and Rt
s =

pr−1
st (R[s,t]) where

[s, t] = {u ∈ T |s ≤ u ≤ t}

and prst is the obvious projection. This system is called the canonical path system of (X,R) over
T and we will denote it simply by (X,R)T . For any path system Ω with the phase space (X,R)
over T there exists a unique deterministic morphism from Ω to (X,R)T which makes (X,R) into
a final object of the category of such path systems and deterministic morphisms.

In particular, any Markov (pre-)process on T with phase space (X,R) defines a Markov (pre-
)process on (X,R) which is known as the canonical representation of the original (pre-)process (see
e.g. [6, p. 48]).

The initial object of this category is the empty path system with Ω = ∅. The only process on
it is the zero pre-process. One also encounters the trivial path system with Ω = X and St

s = R

for all s ≤ t. It carries a unique process. A pre-process on such a path system is a collection of
measurable functions υts on X and it is Markov if and only if for all s ≤ t ≤ u one has υtsυ

u
t = υus .

Lemma 3.3.13 [canun] Let T be a linearly ordered set. Then two Markov pre-processes on the
canonical path system (X,R)T with the same transition kernels coincide.

20



Proof: From Remark 3.3.6 we see that for any s ≤ t ≤ u the compositions (X,R)
µus→ (X,R)[s,u] prt→

(X,R) are determined by the transition kernels. Applying inductively condition (M) one deduces
that transition kernels also determine the compositions

(X,R)
µus→ (X,R)[s,u] prt1×...prtn−→ (X,R)× . . . (X,R)

for all finite sequences s ≤ t1 ≤ . . . ≤ tn ≤ u. Since the σ-algebra on (X,R)[s,t] is generated in the
strong sense by the pull-backs of σ-algebras on (X,R)n with respect to such projections the claim
of the lemma follows.

For clarity let us write Xs for the copy of (X,R) corresponding to the moment s. We will also omit
the product sign and write XY instead of X × Y . For t1, . . . , tn ∈ [s, u] we let prt1,...,tn denote the
evaluation morphism X [s,u] → Xt1 . . . Xtn . For any n > m > 1 and any t1 ≤ . . . ≤ tn in T consider
the disgram

[prmd]

Xt1

prt1,...,tm (µtmt1
)

−−−−−−−−−→ Xt1 . . . Xtm∥∥∥ yIdt1,...,tm−1⊗prtm,...,tn (µtntm )

Xt1

prt1,...,tn (µtnt1
)

−−−−−−−−−→ Xt1 . . . Xtn

(13)

Proposition 3.3.14 [cpthm] Let T be a linearly ordered set and µ∗∗ a pre-process on the canonical
path system (X,R). Then the following conditions are equivalent:

1. µ∗∗ is a Markov pre-process,

2. diagrams (13) commute for all n > m > 1 and all t1 ≤ . . . ≤ tn in T ,

3. diagrams (13) commute for m = 2, n > m and all t1 ≤ . . . ≤ tn in T ,

4. diagrams (13) commute for n > 2, m = n− 1 and all t1 ≤ . . . ≤ tn in T .

Proof: Commutativity of the diagram (13) is equivalent to the commutativity of the diagram

Xt1

µtmt1−−−→ X [t1,tm]
prt1,...,tm−−−−−−→ Xt1 . . . Xtm

µtnt1

y Id⊗ξtmµ
tn
tm

y Idt1,...,tm−1⊗prtm,...,tn (µtntm )

y
X [t1,tn] −−−→ X [t1,tm] ×X [tm,tn]

prt1,...,tm−1×prtm,...,tn−−−−−−−−−−−−−−−→ Xt1 . . . Xtn

and commutativity of all such diagrams is equivalent to the commutativity of diagrams (7) for the
canonical path system since the σ-algebra on X [t1,tm] ×X [tm,tn] is generated in the strong sense by
the pull-backs of the corresponding σ-algebras from finite projections. This proves the equivalence
of the first two conditions. It remains to show that conditions (3) and (4) each imply condition
(2). In the case of condition (3) proceed by induction on m. For the inductive step consider the
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following diagram

Xt1

pr(µtmt1 )
- Xt1 . . . Xtm

Id⊗ pr(µtntm)
- Xt1 . . . Xtn

Xt1

Id

?

pr(µt2t1)
- Xt1Xt2

Id⊗ pr(µtmt2 )

6

Id⊗ pr(µtnt2 )
- Xt1 . . . Xtn

Id

?

Xt1

Id

? pr(µtnt1 )
- Xt1 . . . Xtn

Id

?

where the maps are such that the upper left square is (13) for t1, t2 . . . , tm, the upper right square
is equivalent to (13) for t2, . . . , tm, . . . , tn multiplied with Xt1 and the lower rectangle is equiv-
alent to (13) for t1, t2, . . . , tn. Then the external path of the diagram is equivalent to (13) for
t1, . . . , tm, . . . , tn which gives the inductive step.

In the case of condition (4) proceed by induction on n−m. Consider the diagram

Xt1

pr(µtmt1 )
- Xt1 . . . Xtm

Id⊗ pr(µtntm)
- Xt1 . . . Xtn

Xt1

Id

?

pr(µtn−1

t1
)
- Xt1 . . . Xtn−1

Id⊗ pr(µtn−1

tm )

?

Id⊗ pr(µtntn−1
)

- Xt1 . . . Xtn

Id

?

Xt1

Id

? pr(µtnt1 )
- Xt1 . . . Xtn

Id

?

where the maps are such that the upper left square is (13) for t1, . . . , tm, . . . , tn−1, the upper right
square is equivalent to (13) for tm, . . . , tn−1, tn multiplied with Xt1 . . . Xtm−1 and the lower rectangle
is equivalent to (13) for t1, . . . , tn−1, tn. Then the external path of the diagram is equivalent to (13)
for t1, . . . , tm . . . , tn which gives the inductive step.

Corollary 3.3.15 [bcase] Let T be a linearly ordered set and µ∗∗ be a pre-process on the canonical
path system (X,R)T . If µ∗∗ satisfies (Mf) (resp. (Mb)) then it satisfies (M).

Proof: One can see immediately that in the context of the canonical path systems condition (3)
of the proposition implies (Mf) and condition (4) implies (Mb).

Corollary 3.3.16 [eqv3] Let T be a linearly ordered set and (Ω, ξ) be a path system be such that
the maps ξ[s,t] : Ωt

s → (X,R)[s,t] satisfy the condition

[monstr]ξ−1
[s,t](R

[s,t]) = St
s. (14)

Then any pre-process which satisfies (Mf) (resp. (Mb)) satisfies (M).
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Proof: The equality (14) implies that the maps ξ[s,t] are monomorphisms in the category of kernels
and moreover the same holds for the maps ξ[s,t] × ξ[t, u]. Therefore, it is sufficient to verify the
condition (M) for the projection of our pre-process to the basic path system. Our claim now follows
from Corollary 3.3.15.

Definition 3.3.17 [nondeg] A Markov pre-process is called non-degenerate if for all t ∈ T one
has φtt = Id or equivalently υtt ≡ 1.

Remark 3.3.18 Using Theorem 3.1.2 it is not hard to show that if T is a linearly ordered sets and
(X,R) is a separable complete topological space with its Borel σ-algebra then for any collection
of probability kernels satisfying (10) there exists a Markov process on the canonical path system
(X,R)T for which these kernels are transition kernels. By Lemma 3.3.13 such a process is unique.

Let us now compare our definition of a Markov process with a classical one from [6, Def.1, p.40].
More precisely, we will show that any path system over (0,∞] together with a Markov process on
it defines a Markov process in the sense of [6].

Proposition 3.3.19 [compare1] Any pair of a path system over [0,∞) and a process over it
satisfying (Mb) defines a Markov process in the sense of [6, Def.1, p.40].

Proof: For this comparison we will use freely the notations of loc.cit.. Note that we write St
s

where they write Ss
t . Let Ss denote the union St

s for all t ≥ s. Since we assume (P) we have
prs,ts,u(µus ) = µts and therefore kernels µts for t ≥ s define a kernel

Ps,∗ : (X,R)→ (Ω,Ss)

such that µts are obtained from it by obvious projections. It is obvious from our definitions that
the only condition of [6, Def. 1, p.40] which we have to verify is that for any x ∈ X, any 0 ≤ s ≤
t ≤ u <∞ in T and any B ∈ R one has

[eqgik1]Ps,x{ξu(ω) ∈ B|St
s} = Pt,ξt(ω){ξu(ω) ∈ B}. (15)

The left hand side f(ω) of this equation is a real functions on Ω which is defined only up to a
subset of measure zero with respect to Ps,x and the right hand side g(ω) is a well defined function
on Ω. The definition of conditional expectation tells us that the only thing which we know about
the left hand side is that it is St

s-measurable and for any A ∈ St
s we have∫

A
fdPs, x = Ps,x(A ∩ {ξu(ω) ∈ B})

Hence, the equation (15) really means that for any A ∈ St
s one has

[eqgik2a]Ps,x(A ∩ {ξu(ω) ∈ B}) =
∫
A
Pt,ξt(ω){ξu(ω) ∈ B}dPs,x (16)

which is equivalent to (12). The claim of the lemma follows now from Lemma 3.3.8.

Remark 3.3.20 One can construct processes on the canonical path system such that the corre-
sponding transition kernels satisfy (10) but which are not a Markov processes. Let for example
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T = {s, t, u} where s ≤ t ≤ u. A process on the path system (X,R)T is determined by a collection
of probability kernels

Xs
νus−−−→ XtXu

Xs
νts−−−→ Xt

Xt
νut−−−→ Xu

where for a ≤ b in {s, t, u} we write νba = prµba for the projection pr which removes Xa. The
transition kernels of the process determine νts, ν

u
t and prXuν

u
s and the only composition condition

asserts that
prXuν

u
s = νut ◦ νts.

It is clear now that we may choose many different νus satisfying this condition. By Lemma 3.3.13
all such choices but one will define processes which do not satisfy (M).

4 Tonus spaces

4.1 Tonus spaces

Definition 4.1.1 [conus] A conus structure on a set C is an abelian semi-group structure (with
unit 0) together with a map

m : R≥0 × C → C

which makes C into a module over R≥0 i.e. such that

[eqpo1]m(r, x+ y) = m(r, x) +m(r, y) (17)

[eqpo3]m(r + s, x) = m(r, x) +m(s, x) (18)

[eqpo4]m(rs, x) = m(r,m(s, x)) (19)

[eqpo6]m(1, x) = x (20)

[eqpo5]m(0, x) = 0 (21)

When no confusion is possible we write rx instead of m(r, x). A set with a conus structure is called
a conus space.

Definition 4.1.2 [dpo1] A tonus structure on a set C is a topology together with a conus structure
such that the addition and the multiplication by scalars are continuous.

Definition 4.1.3 [dpo2] Let C1, C2 be two conus (resp. tonus) spaces. A morphism f : C1 → C2

is a map (resp. a continuous map) which commutes with addition and multiplication by scalars.

We let T denote the category of tonus spaces.

Proposition 4.1.4 [ppo1] The category T has all limits. The final object of T is the one point
space. For any diagram D of tonus spaces the underlying topological space of lim(D) is the limit of
the corresponding diagram of topological spaces and the same is true for the limit of the underlying
diagram of conus spaces and abelian semi-groups.

Proof: Straightforward.
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Proposition 4.1.5 [ppo2] The category T of tonus spaces has colimits. The initial object of T is
the one point space.

Proof: The statement of the proposition follows from Lemmas 4.1.6-4.1.8 below and the usual
reduction of general colimits to inductive colimits, reflexive coequalizers and finite coproducts.

Lemma 4.1.6 [lpo5] Let (Cα, fαβ : Cα → Cβ) be an inductive system of tonus spaces. Let C be
the colimit of this sequence in the category of sets which we consider with the colimit topology and
the obvious operations of addition and multiplication by elements of R≥0. Then C is a tonus space
and a colimit of our sequence in T .

Proof: It follows by direct verification using the fact that inductive colimits commute with finite
products in the category of topological spaces.

Lemma 4.1.7 [lpo6] Let C1, C2 be tonus spaces, f, g : C1 → C2 two morphisms and s : C2 → C1

a common section of f and g (i.e. f, g, s form a reflexive coequalizer diagram). Let C be the
coequalizer of f and g in the category of sets which we consider with the coequalizer topology and
the obvious operations of addition and multiplication by elements of R≥0. Then C is a tonus space
and a coequalizer of f and g in T .

Proof: As in the proof of Lemma 4.1.6 everything follows by direct verification from the fact that
reflexive coequalizers commute with finite products.

Lemma 4.1.8 [lpo7] Let C1, C2 be tonus spaces. Let C = C1 × C2 and consider C with the
topology of the product and the obvious operations of addition and multiplication by elements of
R≥0. Then C is a tonus spaces which is both the product and the coproduct of C1 and C2 in T .

Proof: The only non-trivial part of the lemma is that C is the coproduct of C1 and C2 i.e. that
for any tonus space D the map

Hom(C,D) = Hom(C1, D)×Hom(C2, D)

given by the composition with the embeddings C1 → C, C2 → C is bijective. It is clearly injective
and to verify that it is bijective it is enough to prove that a map f : C1 × C2 → D which is
compatible with the algebraic structures and whose restrictions f1, f2 to C1 × {0} and {0} × C2

are continuous is itself continuous. This follows from the fact that f = mD ◦ (f1 × f2) and the
continuity of mD : D ×D → D.

Definition 4.1.9 [grouplike] A tonus space C is called group-like if the underlying semi-group is
a group.

For the basic definitions related to the topological vector spaces and pre-ordered vector spaces we
follow [?].

Lemma 4.1.10 [lpo3] Let V be a group-like tonus space. Then there exists a unique extension of
m : R≥0 × V → V to a continuous map m : R× V → V satisfying the condition

m(r − s, x) = m(r, x)−m(s, x)

and with respect to this map V becomes a topological vector space (over R).
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Proof: The uniqueness is obvious. It is also obvious that if m as required exists then it makes V
into a topological vector space. To prove the existence consider the map m̃ : NR×R≥0 × V → V
of the form m̃(r, s, x) = m(r, x) − m(s, x). The algebraic properties of m imply that it has a
decomposition

R≥0 ×R≥0 × V → R× V m→ V

where the first arrow is defined by (r, s) 7→ r − s. Since the first arrow is a strict topological
epimorphism and the composition is continuous we conclude that m is continuous.

Lemma 4.1.11 [lpo4] Let C be a tonus space and let C → VC be the universal map from C as an
abelian semi-group to an abelian group. Then V has a unique structure of a tonus space such that
C → VC is a morphism of tonus spaces. With this structure C → VC is the universal morphism
from C to a group-like tonus space.

Proof: By (see e.g. []) we may describe VC as the set of equivalence classes of pairs (x, y), x, y ∈ C
such that (x1, y1) ∼= (x2, y2) if and only if there exists u such that x1 + y2 + u = x2 + y1 + u. As
usual we will write x − y for the equivalence class of (x, y). For r ∈ R≥0 set r(x, y) = (rx, ry).
In view of 17 this defines a map R≥0 × VC → VC which takes x − y to rx − ry and one verifies
easily that it satisfies the conditions 18-21. Let π : C × C → VC be the surjection (x, y) 7→ x− y.
Consider VC as topological space with the topology defined by π i.e. such that U is open in VC if
and only if π−1(U) is open in C ×C. The universal properties of this topology imply immediately
that the addition and multiplication by elements from R≥0 are continuous for V and we conclude
that V has a structure of a tonus space such that C → VC is a morphism of tonus spaces. One can
see immediately that such a structure is unique.

Definition 4.1.12 [cancellable] A tonus space C is called pre-group like if the universal map
C → VC is an injection i.e. if the underlying semi-group is a semi-group with cancellation.

Definition 4.1.13 [reduced] A tonus space C is called reduced if it is pre-group like and the
topology on C induced by the map C → VC coincides with the original topology.

Definition 4.1.14 [closedts] A tonus space C is called closed the corresponding universal map
C → VC is a closed embedding.

Clearly any closed tonus space is reduced and any reduced is a pre-group like. It is also clear that
any group-like tonus space is closed. To produced counter-examples to other implications we will
use the following lemma.

Lemma 4.1.15 [need1] Let f : C → V be a monomorphism from a tonus space C to a group-like
tonus space V and let V0 be the set of interior points of f(C) in V . Assume that the following two
conditions hold:

1. the map C0 = f−1(V0)→ V0 is a homeomorphism,

2. for any v ∈ V there exist x, y ∈ V0 such that v = x− y.

Then V (f) : VC → V is an isomorphism.
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Proof: Clearly V (f) is bijective as a map of sets and continuous. Let us show that it is open. Let
V0 be the set of interior points of f(C) it is open in V and the restriction of f to C0 = f−1(V0) is
an isomorphism. Consider the diagram:

C0 × C0 V0 × V0

p0

y yq0
VC

V (f)−−−→ V

where the vertical arrows map (u, v) to u − v and f0 is the restriction of f to C0. Our conditions
imply that q0 is surjective. Since V0 is open in V and the subtraction map V × V → V is open
(follows from the fact that it is isomorphic to the projection V × V → V to one of the factors) we
conclude that q0 is also open. This immediately implies that V (f) is open.

Example 4.1.16 [contr2]Not all reduced tonus spaces are closed. Indeed let C be the subset in R2

which consists of points (x, y) such that x ≥ 0 and y > 0 and the point (0, 0). Considered with the
induced topology and the obvious addition and multiplication by scalars C is a tonus space. Lemma
4.1.15 implies immediately that the embedding C → R2 coincides with the universal embedding to
a group-like tonus space. Therefore C is reduced but not closed.

Example 4.1.17 [contr1] Not any pre-group like tonus space is reduced. Consider the subset C
in R2 which consists of (x, y) such that x, y ≥ 0. Let further U be the subset of elements of C of
the form (x, 0) where x > 0. Consider the topology on C which is generated by the usual topology
coming from R2 together with the condition that U is open. One verifies immediately that the
addition and multiplication by scalars are continuous in this topology. On the other hand Lemma
?? again implies that the embedding C → R2 is the universal one. Since in the topology on C
induced by this embedding U is not open we conclude that C is pre-group like but not reduced.

Example 4.1.18 [expo1]Not all tonus spaces are pre-group like. Indeed, consider the set {0, 1}
with the discrete topology, the abelian semi-group structure given by 0+0 = 0, 0+1 = 1, 1+1 = 1
and m given by m(r, 0) = 0, m(r, 1) = 1 if r 6= 0 and m(0, 1) = 0. These structures satisfiy all the
conditions of Definition 4.1.2 but the resulting tonus space C is not pre-group like since VC = 0.
We will see below (Lemma 4.1.20) however that all Hausdorf tonus spaces are pre-group like. Note
that the spaces in Examples 4.1.16 and 4.1.17 are both Hausdorf. Thus a Hausdorf tonus space
need not be reduced or closed.

Sending C to (VC , Cred)) where Cred is the image of C in VC considered with the topology induced
from VC we get (by Lemmas 4.1.10, 4.1.11) a functor from tonus spaces to pairs (V,C) where V is
a topological vector space and C is a cone in V . Clearly this functor is a full embedding on the
subcategory of reduced tonus spaces and the pair (V,C) is in the image of this embedding if and
only if any element of V can be written as x − y where x, y are in C. Recall that a pre-ordered
topological vector space is a pair as above such that C is closed in V . Therefore, we get the following
result.

Proposition 4.1.19 [embed1] The category of closed tonus spaces is equivalent to the full sub-
category of the category of pre-ordered topological vector spaces (V,C) such that any element of V
is of the form x− y for x, y ∈ C.

Lemma 4.1.20 [lpo1] Let C be a Hausdorf tonus space then one has:
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1. C is pre-group like i.e. for any x, y, u in C such that x+ u = y + u one has x = y

2. m(r, 0) = 0

Proof: Let us denote m(r, x) by rx. Consider the first claim. By 20 and 18 for any positive integer
n we have nx =

∑n
i=1 x. From this by easy induction we get that for x, y, u as above one has

nx+ u = ny + u. By 17 and 19 we get that

x+ (1/n)u = y + (1/n)u

Since C is Hausdorf a sequence may have only one limit and from the continuity of addition and
multiplication by a number and 21 we get

x = x+ 0u = lim
n→∞

(x+ (1/n)u) = lim
n→∞

(y + (1/n)u) = y + 0u = y.

To get the second claim note that by 17 we have r0 + r0 = r0 = r0 + 0 and we conclude from
the first part of the proof that r0 = 0.

Lemma 4.1.21 [hus] Let C be a Hausdorf tonus space C. Then VC is Hausdorf.

Proof: Consider the natural map π : C × C → VC . If C is Hausdorf then by Lemma 4.1.20 we
have π−1(0) = ∆ where ∆ is the diagonal. Since in a Hausdorf space the diagonal is closed and
since π is a topological epimorphism we conclude that {0} is closed in VC . Since VC is a topological
vector space this implies in the standard way that VC is Hausdorf.

Let C be a conus space and let fα : C → Cα be a collection of conus maps to tonus spaces Cα.
Let t(fα) be the weakest topology on C which makes all the maps fα continuous. It is easy to see
that with this topology C is a conus space. We will say that the topology on C is defined by the
collection fα.

Lemma 4.1.22 [isred1] Let C be a pre-group like conus space and let fα : C → Cα be a collection
of morphisms to reduced tonus spaces. Then C with the induced topology is a reduced tonus space.

Proof: Let C → VC and Cα → Vα be the universal morphisms to group-like spaces. By universality
we get commutative squares

C
fα−−−→ Cα

p

y ypα
V

gα−−−→ Vα

such that gα are continuous. Let x ∈ U ⊂ C be an open neighborhood of x in C. We have to show
that there is an open neighborhood U ′ of p(x) in V such that p−1(U ′) ⊂ U . Since the topology
on C is defined by (fα) there exists a finite set α1, . . . , αn and open neighborhoods W1, . . . ,Wn of
fαi(x) in Cα such that U contains ∩f−1

αi (Wi). Since each Cα is assumed to be reduced we have
Wi = p−1

αi (W ′i ) for some W ′i open in Vα. The commutativity of our squares imply now that

∩p−1g−1
α (W ′i ) ⊂ U.

Remark 4.1.23 [impo] It is important to note that (in the notations of Lemma 4.1.22) the uni-
versal topology on V defined by the topology on C need not coincide with the topology induced by
the maps gα : V → Vα. For an example see ??.
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In the following lemma we keep the notations of Lemma 4.1.22.

Lemma 4.1.24 [isclosed] Let C be a pre-group like conus space and fα : C → Cα a collection of
maps to closed tonus spaces such that if x ∈ V is an element satisfying gα(x) ∈ Cα for all α then
x ∈ C. Then with the topology defined by (fα), C is a closed tonus space.

Proof: By Lemma 4.1.22 C is reduced. It remains to check that the image of C in V is closed.
Let x ∈ V be an element outside of C. Then by our assumption there exists α such that gα(x) is
outside Cα. Since Cα are closed this implies that there is a neighborhood W of gα(x) which does
not intersect Cα. Then g−1

α (W ) is a neighborhood of x which does not intersect C.

4.2 Embedding Kop → T

Let (X,R) be a measure space and M+(X,R) the set of non-negative measurable functions on
(X,R). It has an obvious structure of a conus space. Define the standard topology on M+(X,R)
by the condition that a set Z is closed if and only if for any sequence fn of elements of Z such that
fn ↑ f we have f ∈ Z.

4.3 Embedding K → T

Let (X,R) be a measurable space and let M+(X,R) be as above the set of all bounded measures
on (X,R). Any (bounded, non-negative) measurable function f ∈M+(X,R) defines a map

f∗ : M+(X,R)→ R≥0

Define the standard topology on M+(X,R) as the weakest topology which makes all maps of the
form f∗ continuous.

Lemma 4.3.1 [lem4] A map u from a topological space T to M+(X,R) is continuous with respect
to the standard topology if and only if for any f ∈M+(X,R) the composition

f∗ ◦ u : T → R≥0

is continuous.

Lemma 4.3.2 [lem1] The set M+(X,R) considered with the standard topology and the addition
and multiplication by elements of R≥0 defined in the obvious is a closed, Hausdorf tonus space.

Proof: The continuity of the addition and multiplication by scalars follow from Lemma 4.3.1. To
see that the standard topology is Hausdorf consider two measures µ1 and µ2 such that µ1 6= µ2.
Then there is a measurable subset U ∈ R such that µ1(U) 6= µ2(U). Let f be the indicator function
of U . Then for any µ, f∗(µ) = µ(U) and if V1, V2 are two non-intersecting neighborhoods of µ1(U)
and µ2(U) respectively then f−1

∗ (Vi) give us two non-intersecting neighborhoods of µ1 and µ2.
To see that C = M+(X,R) is closed in the corresponding vector space V we need to check that

if µ1, µ2 are two measures such that x = µ1 − µ2 is not in C then there exists a neighborhood N
of x in V such that N ∩ C = ∅. By Lemma 4.1.11, V is universal and therefore any map of the
form f∗ extends to a continuous map f∗ : V → R. Since x is not in C there exists a measurable
subset U ∈ R such that x(U) = µ1(U)− µ2(U) < 0. Let W be a neighborhood of x(U) which lies
in (−∞, 0). Taking f to be the indicator function of U we get a neighborhood f−1

∗ (W ) of x which
does not intersect C.
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Remark 4.3.3 [dense]Unless R is finite the image of C = M+(X,R) in the corresponding uni-
versal group-like tonus space V has no internal points i.e. the complement to C in V is dense.

Lemma 4.3.4 [lem2] Let φ : (X,R)→ (Y,S) be a bounded kernel. Then the composition with φ
defines a map

φ∗ : M+(X,R)→M+(Y,S)

which is a morphism of tonus spaces.

Proof: Follows from Lemma 4.3.1.

Remark 4.3.5 [rem1]Consider the metric on M+(X,R) given by

[eqem1]ν(µ1, µ2) = supU∈R|µ1(U)− µ2(U)| (22)

Remark 4.3.6 The proof of Lemma 4.3.4 implies that if φ is a (sub-)stochastic kernel then the
corresponding map M+(φ) does not increase the distances between measures.

Remark 4.3.7 [rem1]For any point x of (X,R) we have the δ-measure δx concentrated in x.
Evaluating φ∗ on δx we get a measure φ∗(δx) on (Y,S) and one verifies easily that it is exactly
φ(x,−). This shows that for any (X,R), (Y,S) the map

HomK((X,R), (Y,S))→ HomT (M+(X,R),M+(Y,S))

is a monomorphism. We will see below in Theorem 4.3.12 that it is in fact a bijection.

Let µ be a measure on (X,R) and let X =
∐n
i=1Xi be a partition of X into a disjoint union of

measurable subsets. For any δ > 0 denote by U(µ, δ, (Xi)) the set of all measures λ on (X,R) such
that for each i = 1, . . . , n one has

|µ(Xi)− λ(Xi)| < δ.

Clearly U(µ, δ, (Xi)) is an open neighborhood of µ in the standard topology.

Lemma 4.3.8 [lem55] Subsets of the form U(µ, δ, (Xi)) form a fundamental system of open neigh-
borhoods of µ in the standard topology.

Proof: If X =
∐n
i=1Xi and X =

∐m
j=1 Yj are two measurable partitions of X then X =

∐
(Xi∩Yj)

is also a measurable partition of X. Let δ > 0 be a real number and k be an integer such that
k ≥ n and k ≥ m. Let λ be an element of U(µ, δ/k, (Xi ∩ Yj)). Then

|µ(Xi)− λ(Xi)| = |
m∑
j=1

(µ(Xi ∩ Yj)− λ(Xi ∩ Yj)| ≤
m∑
j=1

|(µ(Xi ∩ Yj)− λ(Xi ∩ Yj)| ≤ (m/k)δ ≤ δ

i.e. λ ∈ U(µ, δ, (Xi)). Similarly λ ∈ U(µ, δ, (Yj)) and we conclude that the intersection of two
subsets of the type we consider contains a third subset of the same type.

The standard topology is generated by the maps f∗ : µ 7→
∫
fdµ for bounded non-negative

measurable functions f . In particular for any µ finite intersections of subsets of the form

U(µ, ε, f) = {λ : |
∫
fdµ−

∫
fdλ| < ε}
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form a fundamental system of open neighborhoods of µ. It remains to show that any neighborhood
of the form U(µ, ε, f) contains a neighborhood of the form U(µ, δ, (Xi)) i.e. that for any f and any
ε > 0 there exists a partition X =

∐
Xi and δ > 0 such that for any λ satisfying

|µ(Xi)− λ(Xi)| < δ

we have
|
∫
fdµ−

∫
fdλ| < ε.

Without loss of generality we may assume that f(x) < 1 for all x ∈ X. Let n > 0 be an integer.
For k = 0, . . . , n− 1 set Ik = [k/n, (k + 1)/n). Then

[0, 1) =
n−1∐
k=0

Ik

is a measurable partition of the interval [0, 1). Let further Xk = f−1(Ik) and let

fn =
n−1∑
k=0

k/nFk

where Fk is the indicator function of Xk. By construction we have f(x) ≥ fn(x) and f(x)−fn(x) <
1/n for all x ∈ X. For any λ we have

|
∫
fdµ−

∫
fdλ| ≤ |

∫
(f − fn)dµ−

∫
(f − fn)dλ|+ |

∫
fndµ−

∫
fndλ| ≤

≤ |
∫

(f − fn)dµ|+ |
∫

(f − fn)dλ|+
n−1∑
k=0

k/n|µ(Xk)− λ(Xk)| ≤

≤ µ(X)/n+ λ(X)/n+
n−1∑
k=0

k/n|µ(Xk)− λ(Xk)| ≤

We also have:

λ(X) =
n−1∑
k=0

λ(Xk)| ≤
n−1∑
k=0

|µ(Xk)− λ(Xk)|+
n−1∑
k=0

µ(Xk) =
n−1∑
k=0

|µ(Xk)− λ(Xk)|+ µ(X)

and therefore

|
∫
fdµ−

∫
fdλ| ≤ 2µ(X)/n+

n−1∑
k=0

(k + 1)/n|µ(Xk)− λ(Xk)| ≤

≤ 2µ(X)/n+ (1 + 1/n)
n−1∑
k=0

|µ(Xk)− λ(Xk)|

To find n, δ such that U(µ, δ, (Xk)n−1
k=0) is contained in U(µ, ε, f) it is sufficient now to choose n such

that 2µ(X)/n < ε and then choose δ such that (n+ 1)δ < ε− 2µ(X)/n.
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Let M∗(X,R) be the universal group-like tonus space associated with M+(X,R) i.e. the space of
signed measures on (X,R) with the topology defined by the canonical map

p : M+(X,R)×M+(X,R)→M∗(X,R)

For any f ∈ M+(X,R) the map f∗ : M+(X,R) → R≥0 defines a map M∗(X,R) → R which we
will also denote by f∗.

Lemma 4.3.9 [imp1] The topology on M∗(X,R) coincides with the topology defined by the linear
functionals f∗ for f ∈M+(X,R).

Proof: Let µ = µ+−µ− be an element of M∗(X,R) and U be a subset in M∗(X,R) which contains
µ and such that p−1(U) is open in M+(X,R) ×M+(X,R). We need to verify that there exists a
finite set f1, . . . , fn of elements of M+(X,R) and δ > 0 such that for any λ = λ+−λ− in M∗(X,R)
satisfying

|
∫
fidλ−

∫
fidµ| < δ

for all i = 1, . . . , n, we have λ ∈ U . The condition that p−1(U) is open together with Lemma 4.3.8
implies that there exists ε > 0 and a measurable partition X =

∐m
i=1Xi such that for any pair of

measures λ+, λ− satisfying
|λ+(Xi)− µ+(Xi)| < ε|
|λ−(Xi)− µ−(Xi)| < ε|

one has λ+ − λ− ∈ U .

Proposition 4.3.10 [tem1] The map f 7→ f∗ gives a bijection

M+(X,R)→ HomT (M+(X,R),R≥0).

Its inverse takes a map φ of tonus spaces to the function f such that for each x ∈ X one has
f(x) = φ(δx).

Proof: Let φ : M+(X,R)→ R≥0 be a morphism.

Corollary 4.3.11 [definedby] Let f, g : M+(X,R) → R≥0 be two morphisms of tonus spaces
which coincide on measures of the form δx for all x ∈ X. Then f = g.

Theorem 4.3.12 [t1] The functor K → T sending (X,R) to M+(X,R) is a full embedding. I.e.
For any measurable spaces (X,R), (Y,S) the map

[mm]HomK((X,R), (Y,S))→ HomT (M+(X,R),M+(Y,S)) (23)

is a bijection. Its inverse takes a map φ of tonus spaces to the kernel ψ such that for each x ∈ X
the measure φ(x,−) is f(δx).

Proof: We already noted in Remark 4.3.7 that the map (23) is injective. To show that it is surjective
consider a morphism φ : M+(X,R)→M+(Y,S) of tonus spaces. Let U be a measurable subset of
Y and let IU be its indicator function. The composition of φ with the morphism M+(Y,S)→ R≥0

defined by IU is, by Proposition 4.3.10 a measurable function on (X,R) whose value on x ∈ X is
φ(δx)(U). Therefore, a map ψ : X × S → R≥0 of the form ψ(x, U) = φ(δx)(U) is a kernel. It
remains to show that the map ψ∗ : M+(X,R) → M+(Y,S) defined by this kernel is φ. We know
that it coincides with φ on delta measures. Since the measurable functions on (Y,S) distinguish
elements of M+(Y,S) it is sufficient to check that the compositions of φ and ψ∗ with any map
M+(Y,S)→ R≥0 coincide. This follows from Corollary 4.3.11.
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4.4 Radditive functors on K

Recall that a contravariant functor F from a category C with finite coproducts and initial object
0 is called radditive if F (0) = pt and F (X

∐
Y ) = F (X) × F (Y ). We let R(C) denote the full

subcategory in the category of all contravariant functors formed by radditive functors. For general
properties of radditive functors see [], [].

Lemma 4.4.1 [lrf1] Let C be a category as above and assume that finite coproducts in C coincide
with finite products (in particular pt = 0). Then R(C) is equivalent to the category of contravariant
functors F from C to the category of abelian semi-groups such that F (X

∐
Y ) = F (X)× F (Y ).

Proof: In the case of an additive C (i.e. under the additional assumption that morphisms in C
can be subtracted) the statement is proved in []. The same proof works without subtraction.

4.5 Accessible spaces

4.6 Accessible enrichment of K

Let (X,R), (Y,S) be measurable spaces. For any bounded measure µ on (X,R) and a bounded
measurable function f on (Y,S) consider the map

η(µ, f) : HomK((X,R), (Y,S))→ R≥0

sending φ to
f ◦ φ ◦ µ : 1→ (X,R)→ (Y,S)→ 1.

Define the standard topology on HomK((X,R), (Y,S)) as the weakest topology with respect to
which all maps η(µ, f) are continuous.

Lemma 4.6.1 [lae1] The set HomK((X,R), (Y,S)) with the standard topology and the obvious
operations of addition and multiplication by scalar is a closed, Hausdorf tonus space.

Proof: ???

Lemma 4.6.2 [lem0] The composition of morphisms in K defines maps of tonus spaces of the
form

HomK((X,R), (Y,S))⊗HomK((Y,S), (Z,T))→ HomK((X,R), (Z,T)).

Proof: ???

Remark 4.6.3 [nottopen] Note that the maps of topological spaces

HomK((X,R), (Y,S))×HomK((Y,S), (Z,T))→ HomK((X,R), (Z,T))

defined by composition of morphisms need not be continuous if we take the standard topology on
the right and the product of the standard topologies on the left.
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4.7 Notes

To the relativistic Brownian motion. A physical formulation of the problem. There is a particle p
moving according to the Brownian motion pattern on a physical line L with a marked Borel subset
B. There are three observers X,N1, N2 all moving inertially relative to each other. Observer X
fixes the act of observation of the particle by N1 and the result of the observation (particle is in
point l1 ∈ L). He further fixes an act of observation of the same particle by N2 and bets that N2

observed the particle in B. What is the probability that he won?
The relative velocities of the observers with respect to each other and to the line are known.

Observer X has a clock. For simplicity assume that all the observers are moving along the line L.
Here is another version. There is a physical line L with a ’Brownian motion field’ F . An

experimenter X which is located at point 0 of L and has a clock T creates an apparatus A which
moves along L with a constant speed v. At time s ∈ T the experimenter emits a light signal. When
A receives this signal it places a particle p at its current location on L. From this point on the
movement of p is controlled by F . At time t ∈ T the experimenter emits a second light signal.
When A receives this signal it emits a light signal along L which when it reaches p reflects back.
When A receives the reflected signal it emits a light signal to X who notices the time of its arrival.
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